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ABSTRACT

Because breaking internal waves produces most of the turbulence in the thermocline, the statistics of ¢, the
rate of turbulent dissipation, cannot be understood apart from the statistics of internal wave shear. The statistics
of ¢ and shear are compared for two sets of profiles from the northeast Pacific. One set, PATCHEX, has internal
wave shear close to the Garrett and Munk model. but the other set. PATCHEX north, has average 10-m shear
squared, (S, ", about four times larger than the model.

The 10-m shear components, S, and §,, were measured between 1 and 9 MPa and referenced 10 a common
stratification by WKB scaling. The scaled components. S, and S,. are found to be independent and normally
distributed with zero means, as assumed by Garrett and Munk. This readnly leads 1o analytic forms for the
probability densities of $2; and S$%,. The observed probability densities of §2, and %, are close to the predicted
forms. and both are strongly skewed. Moreover, ai.5%, and oy,s%, are constants. mdependent of the standard
deviations of S, and S,. The probability densny of the inverse Richardson number, Rijg = S,o/( N isa

]
== scaled version of the probablhtv density of S3,. The PATCHEX distribution cuts off near Ri;{ = 4. as found
=== by Eriksen, but the PATCHEX north dxsmbunon extends to higher values, as predicted analytically. Consequently,
Se— a cutoff at Ri;g = 4 is not a universal constraint.
oo Over depths where { N?) is nearly uniform, the probability density of 0.5-m ¢ can be approximated, to varying
= degrees of accuracy, as the sum of a noise variate with an empirically determined distribution and a lognormally
—_— distributed variate whose parameters can be estimated using a minimum chi-square fitting procedure. The 0.5-
b m ¢, however, are far from being uncorrelated, a circumstance not considered by Baker and Gibson in their
—— analysis of microstructure statistics. Obtaining approximately uncorrelated samples requires averaging over 10
— m for PATCHEX and 15 m for PATCHEX north. These lengths correspond approximately to reciprocals of
E the wavenumbers at which the respective shear spectra roll off. After correcting the uncorrelated ¢ samples_ for
—_ noise and then scaling to remave the dependence on stratification, the scaled dissipation rates, ¢ = « N3J{N? ))
~ are lognormally distributed. ( Without noise correction and { N?) scaling the data are not lognormal: e.g., noise
Ay correction and scaling with (N') and ( N*'?) do not produce lognormality.)
: Itis hypothesized that the apprommate lognormality of bulk ensembles of ¢ results from generation of turbulence

in proportion to $%. Lognormality is well established for isotropic homogeneous turbulence (Gurvich and
Yaglom), and Yamazaki and Lueck show that it also occurs within individual turbulent patches. Bulk ensembles
from the thermocline, however, include samples from many sections lacking turbulence as well as from a wide
range of uncorrelated turbulent events at different evolutionary stages. Consequently, the bulk data do not meet
the criteria used to demonstrate lognormality under more restricted conditions. If the authors are correct, the
high-amplitude portion of { N*)-scaled bulk ensembles is lognormal or nearly so owing to generation of the
turbulence by a highly skewed shear moment. As another consequence, a;,5¢, = 2.57 should be an upper bound
for 10 m & when the turbulence is produced by the breaking of random internal waves. Because many pans
of the profile lack turbulence, sensor noise limits the ¢ distribution to smalier spreads than those of S%. In
practice we observe ai,; = 1.2 when Sk, equals GM76, and &,,; = 1.5 when S$% is about three times GM76.
For the larger spread, 95% confidence limits require n = 60 for accuracies of +100%. n =~ 140 for +50%, and
n = 2000 for +10%. Owing to instrumental uncertainties in ¢ estimates, the authors suggest accepting less
restrictive confidence limits at one site and sampling at multiple sites 1o estimate average dissipation rates in

the thermocline.

1. Introduction
For the past 20 years, attempts to estimate turbulence

and vertical diffusivity in the thermocline have been
statistical in nature, relying on bulk averages of micro-
structure parameters rather than on detailed time series
of mixing events. At the same time, Garrett and Munk
(1972a) parameterized the average characteristics of
the background internal wave field in terms of the local
buoyancy frequency, N. Garrett and Munk (1972b)
then applied this parameterization to the rate at which
internal waves randomly break. Munk (1981 ) and De-
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saubies and Smith (1982) refined these approaches.
and McComas and Miiller (1981) and Henvey et al.
{1986) extended the analysis by showing that the rate
at which interactions within the internal wave field
move energy toward small scales and ultimate dissi-
pation depends on N and £ the dimenstonless energy
densiu of the internal wave field. That s, ¢,
x (N*YE?, where { ) denotes an arithmetic mean.
If this line of dcvelopmml 1s correct. the average dis-
sipation rate. (), depends only on these average pa-
rameters and s thus independent of the physical
mechanisms producing the dissipation.

Because free-fall profilers do not adequately measure
E. which is dominated by very low wavenumbers,
Gregg ( 1989 ) recasts the McComas and Miiller ( 1981)
and Henvey et al. (1986) results in terms of the variance
of internal wave shear,

(N> Sty
A() Sl:\l

10N /7

=7x10 (Wkg 'l. (1)

€

wherc Ay = 0.0052s'. St is the fourth moment of
the 10-m shear produced by random internal waves,
and S¢,,, is the corresponding moment for the Garrett
and Munk (1975) model. { This model is known as
GM76 when modifications by Cairns and Williams
(1976) are included.] The revised scaling was applied
to six sets of profiles of instantaneous shear and dis-
sipation from sites where internal waves provide most
of the shear. For these data. the largest ratio of (¢)/
v{N*) is 283 times the smallest (v is the kinematic
wscosm and (e S/e{ N is a measure of the intensity
of turbulence in stratified fluids). Applving (1) reduces
this range to a factor of 3. Therefore, in view of the
limited variability of {¥?) in the thermocline. vari-
ability in shear appears to be the principal factor caus-
ing vanations in { ¢ . Wavenumber spectra of this shear
variability are given by Gregg et al. (1992).

To examine whether (1) applies to individual 10-m
estimates, we use two scts of profiles taken with the
multiscale profiler (MSP) between | and 9 MPa (100
to 900 m) dunng the Patches Experiment (PATCHEX)
in the eastern North Pacific. The first dataset (Gregg
and Sanford 1988) contains 27 profiles from a diffu-
sively stable thermocline in which the variance of
finescale shear is close to GM76. Severa: days after the
main PATCHEX observations, five profiles. referred
to as PATCHEX north, were taken below a week-old
coastal jet off northern California. The shear variance
of the second dataset is about four times GM76. Of
the six datasets used by Gregg (1989) to compare ¢
and shear, only the two sets analyzed here, PATCHEX
and PATCHEX north, contain simultancous mea-
surcments of « and shear witii internal waves at average
or above-average intensity.

To treat the observations in cach dataset as single
ensembilces, the N dependence of the profiles is removed
with
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{2)
and
(3)

Fhus. ., 1s a simple scaling of the tourth shear moment:
that 1s, combining (1) and (2} vields

(. - 095987, (4)

where the constant has units of meters squared per
second. and N scaling of shear is defined in the next
section. In Fig. 1. ¢, is plotted on the v axes. and ¢ is
on the paxes. Asis evident in the 1op panet, 10-m pairs
are weakly correlated and have trends beginning near
logio Rijg = 0. Nevertheless. the large scatter dem-
onstrates that equality between ¢ and ¢, does not apph
to individual estimates but to averages. Averaging over
100 m greatly reduces the scatter. and using 800 m
produces a tight distributien about the dashed line rep-
resenting the madel.

Because (1) applies only 10 averages. we treat the
scaling as a relation between two random processes.
Specifically. we

® (st how well our observations can be modeled by
random processes.

e examine to what degree probability densities of e
and ¢, arc related,

¢ form confidence limits for these variables, and

¢ examine what the confidence limits imply about
sampling.

Gargett ( 1990) suggests that scalings other than (1)
provide equally good fits to data. This may be true,
but, for the 100-m and 800-m averages plotted in Fig.
I, two-sample Kolmogoroffi-Smirnoff tests show no
significant differences between the ¢ and ¢, distribu-
tions. Consequently, we cannot reject the hypothesis
that tn each case ¢ and ¢, are identical populations.
Therefore, whether or not (1) is a unique scaling. it
adequately relates averages of dissipation and shear.
Determining which scaling is best will require 1) ad-
ditional simultanicous measurements of shear, V. and
¢; and 2) careful examination of the statistics. We ini-
tiate the latter in this paper and focus on the averaging
required to collapse widely scattered pairs of ¢ and
(. 10 the ¢lose cquality found between their averages.

In section 2 the normality of the shear components
1s tested and probability densities are developed for
Sto. Rig.and S1,. After a brief review of the lognor-
mality of ¢ at the beginning of section 3, we test the
lognormalkity of our data and then compare the prob-
ability densities of ¢ and «,... In section 4 we present

contidence limits for the shear moments and for log-
normal ¢ data. and we also discuss impheations for
sampling. We conclude in section S with a summary
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Fici. 1. Scatterplots of logge versus log,a¢,, for averages over 10 m. 100 m,and 800 m. PATCHEX

data are shown by dots in the top panel and stars

in the lower pancls. PATCHEX north data are

shown by open circles. The heavy dashed line is logige = 108106

and discussion. Throughout the paper we use non-
parametric statistical tests wherever possible. Often
several tests are applied to examine different aspects of
the data. To maintain continuity in the discussion while
being thorough with the statistics, many detaits of the
tests are in the appendixes.

2. Statistics of shear and its moments

QOur goal In this section is 1o investigate how well
instantaneous shear and 1ts moments can be repre-

sented as random processes. as assumed by GM76. This
involves first demonstrating uncorrelatedness, in the
vertical and pairwise between components. Then we
can form moments of the data and test whether the
distributions it analvtic models. Because tests applicd
to individual profiles are not rigorous, owing to smalt
sample sizes. we use several methods for cach hypoth-
esis we test, expecting gross departures from our hy-
potheses to be apparent in all tests. We note minor
departures. but assume that their presence does not
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invalidate further development. Details of statistical
tests used in this section are in appendices A-C.

a. The shear components, S, and S,

With eastward and northward flow represented by
U and V, the shear components are compuied as

S, = V2.n(£’), S, = V2.11(—A—Y—) L5
Az Az

with Az = 10 m (Gregg and Sanford 1988). The factor
of V2.11 corrects for the attenuation of the first-differ-
ence filter, making the shear variance comparable to
an integral of GM76 t0 0.6 rad m™" (0.1 cycle per me-
ter). Systematic changes resulting from changes in
stratification are removed with

_-_NO_\, ¢ =gfDo )
<‘\'r2>il7,’ ¥ <N2>|/:/‘

Based on two nonparametric statistical tests, the run
test and the spectral distribution function, we cannot
reject at the 5% level of significance the hypothesis that
for PATCHEX S, and S, are vertically independent,
although there is some evidence of weak vertical cor-
relation. (See appendix A for details.) Neither can we
reject the hypothesis that the shear components are
pairwis¢ independent of each other. We thus assume
the PATCHEX shear components are independent
both in the vertical and pairwise. This, however, is not
true for PATCHEX north, as one of the five profiles
is rejected by both tests (appendix A).

Means and standard deviations of N-scaled and
unscaled shear components are given in Table 1. Al-
though N scaling has little effect on the standard de-
viations for PATCHEX, it increases by 50% the stan-
dard deviations for PATCHEX north. Taking &, and
&, as the sample standard deviations of S, and S, we
compute normal probability densities having zero
means and ¢, = ({/2)(o; + 4,). (For PATCHEX g,

5.=S (6)

TABLE |. Means and standard deviations of 10-m shear compoc-
nents. The PATCHEX distributions have 2187 samples. and the
PATCHEX north distributions have 405 samples. Parameters scaled
with (M) are overstruck with a circumflex.

Mean Standard deviation
PATCHEX
Sy -2.20 X 1073 250x10°?
Sy ~4.26 X 1073 263x107°
S ~4.88 X 10°* 2.74 x 107}
S, -3.68 X 10°* 2.84 x 107}
PATCHEX north
S, ~2.68 X 103 33310 °
Sy ~5.79 X 108 320 x 107!
S -7.25 x 107 491 x 103
S, 7.82 x 107° 474 % 10
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=279%10"*s™", and for PATCHEX north 5, = 4.83
X 1073s7'.) As seen in the lower panels of Tig. 2,
overlaying these normal probability densities and his-
tograms of the observations reveals good fits.

Working with our assumption of independence, we
apply the Lilliefors test statistic (appendix A) to test
the hypothesis that S, and S, are normally distributed
with zero means and common variances. We find that,
at the 5% level of significance, we cannot reject this
hypothesis. A visual equivalent of this test is displayed
in the upper panels of Fig. 2. which show quantile-
quantile (g-g) plots (Chambers et al. 1983), with ob-
served distnbutions along the vertical axes and fitted
normal distributions along the horizontal axes. If the
observed distributions were identical to the fitted dis-
tributions, the data would plot along diagonals from
lower left to upper right. The Lilliefors test statistics
provide a way of plotting 95% confidence limits to as-
sess whether voserved departures from the diagonal
are consistent with random deviations. For both da-
tasets, S, remains within the 95% confidence limits, as
is the case for S, (not shown). Therefore, we can treat
the shear components as normally distributed with zero
means. Under this assumption, we use an Ftest to find
that, at the 5% level of significance, the variances of S,
and S, can be taken to be the same.

b. The second moment, S35, and the inverse
Richardson number

Unscaled and scaled second moments are

Slo=81+52, Si=S51+53. (1)
When S, and S‘_,, are normally distributed and uncor-
related, the probability density of S%;, can be calculated
readily because it is the sum of the squares of S, and
S,. The result is an exponential distribution ( Papoulis
1984),

_ 2 . 4 . @2
- S)_(R(Z—yz/gf_‘.‘—) H(y), with y = S = S2 + AY
[

(8)

H(y)=1fory=0and H(y) = 0 for y < Q. (If nor-
malized to o2 = 1, P, is X with two degrees of freedom.)
The g-q plots of log,S7, show the PATCHEX distri-
bution slightly crossing the 95% confidence limits but
all the PATCHEX north distribution remaining inside
(Fig. 3). (The probability density of log,0S i, is derived
in appendix B.)

To the degree that the gradient Richardson number
is nut influenced by fluctuations in N* induced by in-
ternal waves, the probability density of log,; Ri g is
simply a shifted version of the probability density of
the second moment of the scaled shear: that is, logp
Rijd = logoS3, + 4.57, where log,oN3 = —4.57. The
critical value for dynamic instability of parallel shear
flowsis Ri_' = 4 (Miles 1961). corresponding to log,o

P,
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FIG. 2. In the lower panels, normal probability densities having zero means and standard deviations of
a, are shown by heavy lines. The observed probability densities of S, are shaded. In the upper panels, g-¢
plots have the observed (empirical) distributions along the vertical axes and the normal (theoretical) dis-
tributions along horizontal axes. The observed distributions fall within the 95% confidence limits of the
theoretical distributions (dashed lines), which are much wider for PATCHEX north, 405 samples, than for
PATCHEX, 2152 samples. Appendix A describes calculation of the 95% confidence limits.

Ri;! = 0.6. From the log;o Ri ¢ scale in Fig. 3, we see
that the PATCHEX distribution drops to zero just to
the left of 0.6, similar to previous reports of cutoffs of
Richardson number at the critical value (Eriksen 1978,
1982). Only 0.2% of the PATCHEX samples have log,,
Riid > 0.6, compared with 17.5% exceeding log,o
Rijg > 0. The observed probability density for
PATCHEX north also follows the theoretical predic-
tion, but it does not cut off at the critical value; 9% of
the samples exceed log;o Rijg = 0.6, and 56% have
log;o Rig > 0. Replotting in more conventional form
(Fig. 4) shows the PATCHEX north Richardson num-
bers peaking sharply between 0.25 and 0.5.

Munk (1981) argues that saturation of the shear
spectrum prevents Richardson numbers from dropping
below 1/4, even when the shear rises above the back-
ground state modeled in GM76. He bases his argument
on observations by Eriksen ( 1978), who computed the
Richardson number by first-differencing data from
current meters moored 7 m apart in the vertical. Er-
iksen did not discuss the energy level of the internal

waves, but review of his data shows that the energy
level cannot be distinguished from GM76 (Eriksen
1991, personal communication). Thus, Eriksen’s ob-
servations are fully consistent with our distribution for
PATCHEX, but the PATCHEX north distnbution
demonstrates that Eriksen’s result cannot be general-
ized; 10-m Richardson numbers smaller than one-
fourth occur for shears above GM76.

c. The fourth moment, %,
Unscaled and N-scaled fourth moments are
Sto=(S%)?, St =(5h)*. (9)
As shown in appendix B, we can use (8) to obtain the
probability density of S7y: namely,
_ P(y) _exp(—y/2¢2)
gl 4yel
w=y?=S%. (10)

Provided that S, and S, are normally distributed and
uncorrelated, the standard deviation of the natural log-

H(y),

w
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FI1G. 3. In the lower panels, observed probability densities of 1021652 (shaded ) are compared with the
predicted form (B1), shown as heavy curves. The light curves are the cumulative distribution functions of
the observed distributions. Vertical dotted lines mark constant values of log;o Rij{. The critical Richardson
number of 0.25 corresponds to log,g Rijd = 0.6. In the upper panels, g-q plots have the observed (empincal )
distributions along the vertical axes and the theoretical distributions along horizontal axes. Part of the
PATCHEX distribution falls slightly outside the 95% confidence limits, but none of the PATCHEX north
distribution exceeds the confidence limits. Confidence limits were computed using the exponential case of

Mason and Bell (1986).

arithm of the $), ains4,, is a constant equal to 2.57
and does not change with variations in £. The distri-
bution of log:S$e (B11) is highly skewed. with a long
tail extending to very small values. Comparison with
the observed probability densities shows parts of the
PATCHEX distribution slightly outside the 95% con-
fidence limits on g-g plots and all of the PATCHEX
north distribution inside the limits (Fig. §).

To investigate why the PATCHEX distributions fall
just outside the 95% confidence limits, we examined
the vertical correlation structure of the shear moments.
As discussed in appendxx C, we find no evidence of
vertical correlatedness in S%, but there are indications
of temporal correlatedness. For PATCHEX, direct ev-
idence comes from averaging S}, and 5% vemcally
over 100 m and applying run tests to time series in
each pressurc range. For both moments, two _of the
eight series fail the run test, although 8, and §, pass.
We are uncertain of the reason, but believe it likely
that near-inertial motions dominate the shear. Owing

to their rotation, they rapidly decorrelate S.and S, but
not $3,and $%,. In addition. when data from all profiles
in the same cruise are treated in a single ensemble. the
standard deviations of log;yS7, and log,65%, do not de-
crease as rapidly as they should for independent sam-
ples {appendix C). In some cases, observed standard
deviations exceed predictions by more than 50%. The
discrepancies are largest when averages of full profiles
are compared, which suggests wecak temporal coher-
ence.

d Summary

Probability densitics of S, and .S, are adequately ap-
proximated with normal distributions having zero
means and common variance. Empirical tests suggest
that S, and S, are uncorrelated for PATCHEX. but
PATCHEX north may have some correlatedness. As-
suming uncorrelatedness, we deme analytic forms for
the probability densities of log,0S7 and log,oS fo. Ob-
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FIG. 4. Observed probability densities of Ri,, (shaded ) compared
with predicted forms {solid lines). At low values, both observed dis-
tributions cut off as predicted theoretically. For PATCHEX. the cutoff’
is close to Ri,g = 1/4. For PATCHEX north. the cutoff occurs at
smaller values, and 9% of its samples are smaller than /4.

served probability densitics of these moments are close
to the predictions, with the PATCHEX north distri-
bution within the 95% confidence limits and the
PATCHEX distnbution slightly outside at some places.
Because this pattern is contrary to what would be ex-
pected from the correlation tests on Sy and S,.. we sus-
pect that the discrepancy results from weak temporal
coherence between the PATCHEX profiles and that
this coherence results from near-inertial motions.
Probability densities of Richardson number, computed
using the mean stratification, agree with the predicted
distributions. The PATCHEX distribution cuts off near
Ri;, = 1/4. as found bv Eriksen (1978), but the
PATCHEX north distribution extends to smaller val-
ues. Therefore. a cutoff at Ri,, = 1 /4 1s not a universal
condition,

3. Statistics of dissipation

Turbulence is inherently intermittent. Even when
turbulence is statistically homogeneous, local concen-
trations of small-scale shear determine average dissi-
pation rates. { ¢, throughout the entire volume. Con-
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sequently, the sampling problem is to observe ¢nough
of the infrequent large values to ensure precise averages.

For statistically homogencous and isotropic turbu-
lent tlows, Gurvich and Yaglom (1967 ) show that the
turbulent cascade leads to lognormal probability den-
sities of ¢ that is, Ine is normally distributed. Lognormal
distributions are typical for positive-definite variables
produced by repeated multiplicative applications of a
random process. For example. the sizes of sand grains
broken oft nearby rocks are lognormal, as are dissi-
pation rates of the smallest eddies in a turbulent cas-
cade. Lognormal probability densities are parameter-
ized by 4, and oy, . the mean and standard deviation
of Ine. Gurvich and Yaglom (1967) argue that o,y .
which measures intermittence. and hence the difficulty
of sampling, increases with Reynolds number. At pres-
ent, however, there is no way to estimate oy, a priori.
even in homogeneous turbulence (Yamazaki and
Lueck 1990).

The airfoil probes used on MSP 10 detect velocity
microstructure also respond to thermal transients hav-
ing frequencies of 0.1-1 Hz (Osborn and Crawford
1980). At the MSP fall rate. these frequencies corre-
spond to wavenumbers of 0.3-3 cpm. To minimize
the effect of thermal transients and to detect short-
length changes in turbulent intensity, we compute ¢ by
integrating spectra taken over 0.5-m data windows.

In examining the statistics of ¢. we must consider
whether the samples are correlated. Only with uncor-
related samples can we accurately bound the degree of
intermittence and estimate confidence limits for bulk
ensembles of dissipation. Uncorrelatedness has not
been addressed previously—investigators have merely
assumed it. regardless of sample length or local cir-
cumstances. For example. Baker and Gibson (1987}
assume uncorrelatedness for 0.23-1.15-m samples
along horizontal tows taken by Washburn and Gibson
(1984) and for 100-200-m samples along profiles taken
by Gregg (1977). Confidence limits computed using
standard deviations from positively correlated data are
usually optimistic: that is. they give tighter limits than
warranted.

a. Probability densities of 0.5-m ¢

Probability histograms of log¢ for the 0.5-m sam-
ples are highly skewed, with long tails at large magni-
tudes and sharp cutoffs at low magnitudes (Fig. 6).
Probability distributions have long been described as
resulting from approximately lognormal occanic signals
at high magnitudes and noise at low magnitudes. Ob-
servations are considered noise when their spectral level
drops 1o a low level that is only approximately constant
because the ensembles are collected using probes having
different noise levels and sensitivitics. For MSP this
level is 10 ' W kg ' (Gregg and Sanford 1988). Be-
cause ¢ is positive definite, noise distributions are not
expected to be normal but are closer to lognormal.
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FIG. 5. In the lower panels, the observed distributions of log,S?, (shaded ) agree weli with the prediction
(B11). In the upper panels, g~g plot; based on modified Lilliefors statistics show parts of the PATCHEX
distribution slightly exceeding the 95% confidence limits. None of the PATCHEX north distribution falls

beyond the bounds.

Distributions that are mostly noise were observed by
MSP on the equator during TROPIC HEAT 2 in Apnil
1987. Below the undercurrent, zones several hundred
meters thick frequently contain little or no measurable
dissipation. In Fig. 6 the distribution of ¢ from 910 9.5
MPa during TROPIC HEAT 2 is seen to be similar to
the low-magnitude portion of the PATCHEX distri-
bution.

We can estimate the lognormal parameters by fitting
the observed histograms to a function that is the sum
of the TROPIC HEAT 2 noise distribution and a log-
normal distribution. Taking data in increments of |
MPa, we use a minimum X? procedure to estimate
means, gy, and standard deviations, ¢y,,. These esti-
mates are given as i, and a),,,. As described in appen-
dix D, the procedure works best for PATCHEX north,
which is less affected by noise. For PATCHEX, iy,
decreases strongly with pressure, and &), increases
gradually from &y, = 2.9 at 2-3 MPa to &;,, = 3.2 at
8-9 MPa (Fig. 7). Its average is 3.01 + 0.13. For
PATCHEX north, f,,, increases only between 2 and 5
MPa, reflecting the nonuniform vertical distribution

of dissipation and shear, and &,,, shows no trend and
has an average of 2.56 + 0.17.

b. Averaging 0.5-m € o obtain uncorrelated
estimates

Even casual inspection of profiles of 0.5-m ¢ shows
vertical trends. with patches of contiguous large values
separated by zones at the noise level (Gregg et al. 1986).
Consequently, applying the run test to unscaled ¢ be-
tween 2.5 and 5.0 MPa, where N is uniform, results in
all profiles being rejected ( Table 2). Increasing the av-
eraging length, L., slowly decreases rejections. For
PATCHEX, L. = 8 myields 3 rejections in 27 profiles.
a ratio found previously for random rejections of un-
correlated data (appendix A ). Further increasing L_to
10 m removes all rejections, and we treat 10-m
PATCHEX averages as uncorrelated. PATCHEX
north requires averaging over 10 to 15 m for no rejec-
tions. In both cases, the minimum averaging length
required for uncorrelated samples corresponds to the
reciprocal of the wavenumber (in cycles per meter) at
which the shear spectra roll off (Gregg et al. 1992).
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FIG. 6. Probability densities of all 0.5-m log,e¢ samples between |
and 9 MPa for PATCHEX (shaded ) and for PATCHEX north (sohd
line). They are compared with a probability density obtained between
9 and 9.5 MPa on the equator during TROPIC HEAT 2 (dashed
line). The latter appears 10 be nearly all noise.

¢. Noise correction of the 10-m estimates

To facilitate comparisons of the datasets, we average
¢ over 10 m and scale with ( N2 to form & (3). Testing
these profiles for uncorrelatedness over the full range
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FI1G. 7. Parameters for 0.5-m Ine, obtained by X ? fits to data taken
in 1 MPa increments. PATCHEX values are shown by open circles
and PATCHEX north by crosses. Reflecting different vertical distri-
butions of (¢}, i, decreases rapidly with pressure for PATCHEX
but increases slightly for PATCHEX north. For both datasets, esti-
mates of the standard deviation, &, are nearly constant below the
near-surface high- N duct.

ET AL. 17895

of 1-9 MPa, 11 PATCHEX records fail the run test
and 6 fail with the spectral distribution function ( Table
3). These failures result from the increasing effect of
noise below S MPa. To correct for the noise, we set to
zero all 0.5-m samples with ¢ < 10 '°, Out of 2187
10-m intervals for PATCHEX, 35 have no 0.5-m sam-
ples with ¢ > 10 ', Omitting these, only 1 of the
PATCHEX profiles fails the run test, but 6 still tail
with the spectral distribution function (Table 3).
Therefore, a minority of the records have somg verucal
correlatedness, even after noise correction. Because
noise is less important for PATCHEX north, no 10-m
intervals had to be dropped. and noise correction does
not affect the run test or the spectral distribution func-
tion (Table 3). Removing notsy values decreases the
magnitudes of the smallest 10-m averages, thereby in-
creasing o), for both datasets (Table 4).

d. Probability densities of noise-corrected 10-m €

Applying (N 2 ) scaling to the noise-corrected data
affects the standard deviation differently for the two
records because they have differing vertical distri-
butions of dissipation (Table 4). Taking the {¥?)-
scaled and noise-corrected distributions as the most
accurate, for PATCHEX the sample mean of Ine,
i = —22.240 and the sample standard deviation of
Ing, a1y; = 1.188; for PATCHEX north gy,; = —20.270
and a),; = 1.463.

After noise correction and (N?} scaling, both da-
tasets pass g—q tests for lognormality (Fig. 8). With
only { N?) scaling or with only noise correction, neither

TABLE 2. Run tests on averages of 0.5-m ¢ between 2.5 and 5.0
MPa. Because noise contamination is insignificant and the stratifi-
cation nearly uniform, no corrections are applied 1o «. The number
of reiactinns is left of the sntidus, and the number of samples is right.
The number of samples in each profile decreases with increasing
averaging length, L. All profiles fail for L, = 0.5 m, which represents
no averaging. for example, for PATCHEX there are 27 rejections for
27 profiles. Rejections decrcase with averaging, there are none for [,
= 10 m for PATCHEX and L; = 15 m for PATCHEX north.

L./m n Rejections
PATCHEX
0.5 <500 27727
2 125 23727
4 63 1727
5 50 6/27
B 32 3/27
16 25 0727
PATCHEX north
S 160 5/8
10 RO 2/5
IS 1¢] 0/S
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TaBtE 3. Tosts for vertical independence of @ Tests on i0-m 0 IS estimated by 0959 = X3 The expected value of

between | and 9 MPa. SDF refers to the spectral distriibution tunction s
Ihe number of rejections is to the left and the number of prolies is

to the right. o L1l oxpipn, - O0.5a0,). t12)
Runs rejected SDF rejected TS estimuated by expog,,, © 034 e bor PATOCHE N,
- . ©otheesnmute o {0 [is 3,65 < 10 " and the estimate

PATCHEXN of Fjdis 445 - 10 " Fhese are within 200 of 7
uncorrected 14,27 6:27 433+ 10 M aheamverage of the nose-corrected and
noise corrected 1727 627 N sealed dissipation data, For PATCHEN north.,
the estmate of Lo ] iv 318 - 10 7 and the esimate

PATCHEX north of Flelis 459 - 10 7 which are within 200 of ¢

uncorrected 23 43 A3

noise corrected 28 1S Because ¢ 18 much more attected by noise than is

€ - their probability densities do not agree at low mag-
nitudes. particularly for PATCHEN (Fig. 9. To dem

distribution passes, owing to vertical trends remaining  onstrate the effect of noise, we crudely simuiated it by
in the profiles. We also scaled with ' and N'*. pro-  adding 5 x 10 ""{A,,/ V)" to the 1C-m S¥, values and
posed by Gargett (1990) 1o remove vertical trends.  then converted them 10 €, . As seen in the fower panels
These scalings do not completely remove vertical  of Fig. 9, adding the noise greatly improves agreement
trends, and owing to the trends the scaled data do not  at low magnitudes.

pass for lognormal.

Averaging the 10-m samples over 100 and 860 m
reduces a,; by factors of 2-3, considerably less than
the reduction expected for uncorrelated samples { Table o e second moment of shear. S,
5). For example. averaging ten of the PATCHEX sam-
ples reduces oy,; from 119 10 0.64 instead of to 0.47
as expected. This s similar to the slower-than-expected
decrease in &,

4. Confidence limits and sampling

Because Sio is a rescaled x° random variable with
two degrees of freedom. confidence limits for F(S7,)
= 2a7 can readily be found based on an average of n
independent samples. ( ST, = (1/0) Y % S, These
limits can be stated as the interval

Scaling the St distributions as ¢, and overlaying [La X (Siap. Ly X (Siay]. (13
them on the noise-corrected ¢ distributions reveal that  As shown in appendix 7.
both distributions are similar at large magnitudes ( Fig. , 5
9). (Appendix E includes a more quantitative com- L = -n and U = ~h (14)
parison using ¢-¢ plots.) Agreement at high magnitudes X " )
is important because the high-magnitude tails heavily
influence the mean values. or first moments. The ¢x-
pected value of ¢, is obtained by using (4) and (B3):

e. Comparison with probability densities of S,

B
Xauir g2

where Y ;, is the ¢th percentage point of the x* dis-
trtbution with » degrees of freedom., and p is the con-
) fdence level. For p = 0.95, averaging 10 samples gives
Ele,] = 0959E[ST0]) = 0959 X 8at. (11) L,y =0.585and L'}, = 2.09 (Fig. 10). As n increases.

TaBLE 4. Statistics of 10-m disstpation between 1 and 9 MPa. For both datasets the 10-m estimates are formed in three ways. Anthmetic
averages include all 20 of the 0.5-m samples in the 10-m inicrval. Noise-corrected [-m values are computed by setting to zero 0.5-m
samples less than 10 " W kg™, For PATCHEX 35 of the 10-m averages contained no values larger than the noise and were dropped from
the corrected ensemble. Finally, the notse-corrected estimates are scaled using (3).

Data [ ¢ ;Im Him,
PATCHEX

arithmetic 2187 431 - 10"® 22387 103

noise corrected 2152 402 > v 22700 1,373

notse corrected and £ A7 scaled RAR 455 - jo " 2240 1188
PATCHE X north

simple average 4035 212007 20978 1.303

notse corrected 405 20010 21.087 1408

noise correeted and <N scaled 405 5.1

3000 241270 463
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FiG. R Probability densiies of V7 -scaled and nose-corrected  [4-m dissipation rates. In the lower
panels. observed probabihity densities (shaded ) of log,e¢ are compared with normal distuibutions having the
same means and standard deviations. In the upper panels, ¢~ plats show that both distnbutions fall within
the 957 confidence limits. To construct the g-¢4 plots. we use the modified Litliefors test with case 3
estimating means and standard deviations from the distribution.

1., and (', slowly converge to 1. averaging the 27
PATCHEX profilcs between 500 and 600 m gives /o
=0.891 and U, = 1.13.and averaging all PATCHEX
data having matching noise corrected € sields 1 x-
09589 and (-5, 1.04.

b. The fourth moment of shear, S,

Confidence limits for E(S7) = 8a7 = 2[E(S1)]}

N -

can also be based on ¢ S1, . resulting in
[13 % 20(ST0)). U x 2({S50 )% (19)

where 2(<.§f(,> )® is an estimate ()f{S"Tn 7 for normally
distributed shear components. Alternatively. confi-
dence limits can also be based on (St = (1/m)
x 2081, and take the form

(L, x (St Ul x (ST (16)

As discussed in appendix F. 1., and U7}, are considerably
more difficult to obtain than I, and U,,. Morcover. tor
n > 1 the expected distance between the upper and
lower confidence limits based on ¢ .‘i'fn,; 1s 3% ~12

larger than the expected distance based on Sin. For
these reasons. the confidence limits for £(ST)in(15)
arc preferable.

Because 7.7 and U depend ondy on a1, they are the
same for both datasets. Forming the [00-m averages
plotted in Fig. | requires n = 0. resulting in 7,

0.5857 = 0,342 and U5, = 2.097 - 4.36. Using (4}
to convert $1,10 ¢, . we also multiply the multiplicative
confidence limits by 0.959. Thus. on the logarithmic
axis for ¢, in Fig. 1, the 957 conhdence limits for the
100-m values correspond to - 0.48 and +0.62. For the
800-m averages in Fig. 1. the limits arc 0.632 and 1.52,
corresponding to - 0.20 and +0.138 on the logarithmic
axts.

To form confidence hmats for the expected value.
Ife,.]. of all data for cach set, for PATCHEX L3«
= 0.920 and 3> © 1.08. Because the estimate of
Flia]ts3.65 < 10 ' the 957 confidence limits are
(410 % 10 " 482 10 "), Similarly. for PATCHEX
north [ 0.90%and 3o« - 1.11. With an estimate
of the expected value cqual 10 4,18 > 10 7,937 con-
fidence limits are (3.64 < 10 7 445 % 10 V).
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TasLk §. Changes in i, and @, with averaging length, L. Estimates of sample meuns and standard desutions ot Tneare given by oy
and dpn;. tespectivels. Averaging 10-m nosse corrected € over 100 and 0O moancreases gy, and decreases gy, For comparson the salaes i

pareatheses are the ones expected for averaging tully independent an
Taylor senes expansion and by Monte Carlo simulation

PATCHEX

d logoormaihy distributed 10-m samples They were aileubisted by

L.m n K e n Rine 7N

1o 2182 BRRINY DY 305 R T
1K 26 I 206 ©ad 047 40 1982 ¢ 1960 (RF 0 Gin
BOO 27 2056 2155 023(0.1%) < 199 1929 G360 22
¢. The dissipation rate. ¢ L, can be obtained from his tables. Land (1972 dis-

For tognormal distributions, &,,.. the maximum
likelihood estimate of E{e] is calcutated by evaluating
(12) with the sampie mean g,,,; and sample standard
deviation ay,; of Ine. In appendix G we discuss some
difficulties with Baker and Gibson's (1987) use of this
cstimate.

L.and ( 1975) gives tables for computing exact con-
fidence limits for E[¢] based upon f,: and ay,,;. These
limits can be written as [ €mie L, €micl’s]. where L, and

-

PATCHEX
1-9 MPa

08

c6

prob. density function

PATCHEX

06

04

prob. density function

02+

00

19

logy, €

FiG. 9. Comparisons of probability densities of 10-

noise added to ¢,

cusses an approximation to these imits due o . R,
Cox. For 934 confidence himits this approximation
takes the simple form

[Gme €XpE—1.969 ), € oxpl1.967)). (1)

wherc

- p -3 s E B}
v lan/n v am/2(n 4 1) (18)

{ Baker and Gibson ( 1987) obtained a similar resuit].
While this approximation is useful for large sampic

Tyt 1

g

PATCHEX nnorth
1-3 MPa

B Y S

PATCHEX north
notse added to ¢

o~

iog,e ¢

m loge (shaded) and logye,, (heavs ine). The ¢

distributions have becn comrected for noise and scaled with < - . [n the upper panels the ¢ and ¢, distnbutions
agree much better at high magnitudes than at low magnitudes. The lower panels repeat the companson after

notse similar to that modeled for ¢ has been added to
between the ¢ and ¢, probability densities, particularly

the ,.. This greatly improves the overall agreement
~for PATCHEX.
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F1G. 10. Multipliers for upper and lower 95% confidence limits of
averages of n independent samples of the second and fourth moments
of shear. These multlphcrs are U, and L, in (13) for $3,and U2 and
Liin (15) for §%.

sizes and moderate values of 5),;, it can give large errors
for small sample sizes. For example, we take n = 10
with §,; = 1.19 for PATCHEX (Table 5). The .p-
proximations give (0.3%m, 2.57€me) compared to
(0.45€ e, 6.46¢€m. ) for the exact 95% confidence limits
[these limits correspond to (—0.35 + logoéme, + 0.81
+ logo€me) ON logarithmic axes].

The multipliers L, and U, are plotted in Fig. I 1 for
g = 0.5, 1, 1.5, 2, 2.5, and 3, covering the range of
ain: likely to be obtained from observations. As an ex-
ample, the values in the first row of Table 5 indicate
that &, = exp(—22.24 + 0.5 X 1.19%) = 4.45 x [0°
for PATCHEX and €p = exp(—20.27 + 0.5 X 1.467)
= 4.57 X 10° for PATCHEX north. The correspond-
ing 95% confidence limits for E{¢] are (4.17 x 1077,
4.76 x 107"} for PATCHEX (based upon n = 2152
samples) and (3.76 X 10°%, 569 X 10°°) for
PATCHEX north (n = 405 samples). The corre-
sponding multipliers are Lys; = 0.937 and Uy, = 1.07
for PATCHEX and Lss = 0.823 and U,ys = 1.25 for
PATCHEX north. For both datasets the confidence
limits include the estimates obtained using 5% in (11)
and the computed sample averages of e.

5. Summary and discussion

a. Summary

Statistics of shear and dissipation are compared for
two sets of profiles taken when the internal wave field
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appeared statistically homogeneous over distances of
kilometers and steady over intervals of days. For one
set, PATCHEX, the internal waves are close to GM76.
for the other set, PATCHEX north, the root-mean-
square 10-m shear is three times GM76. Our findings
are as follows.

1) After scaling the shear components. S, and S,
with ( N?). the scaled components, S, and S,.. are nor-
mally distributed with zero means and are uncorrelated
with each other. This readily leads to analytxc forms
for the probability density functions of S} and S1;.
The latter is highly skewed, and the standard deviation
of InS%, is a constant, onst, = 2.57. For PATCHEX
north the measured dlstnbutlons of $%, and S, are
within the 95% confidence limits of the analytic forms.
For PATCHEX the measured distributions are similar
to the analytical forms, but they slightly exceed the
95% limits.

2) For both datasets the probability densities of the
inverse Richardson number, Rijg = Sio/{N?), are
close to those predicted. Consistent with Enksen
(1978), the PATCHEX distribution cuts off near 4.
but 9% of the PATCHEX north distribution has
Rijd > 4. Therefore, the cutoff at Rijd = 4 is not a
universal constraint.

3) For bulk ensembles of 0.5-m ¢ collected where
(N?) is nearly constant, the lognormal parameters.
Mine and ay,,, can be estimated objectively by minimiz-
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FiG. 11. Multipliers for upper ( { ;) and lower ( L,) 95% confidence

limits of averages of lognormal distributions, as functions of the
number of samples, n, and of the standard deviation of the natura)
logarithm of the vanable. The multipliers are obtained by interpolating
the exact confidence limits given by Land (1975) and are given for
mg; Spanning the range expected in the ocean.
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ing X * fits to the sum of a lognormal distribution and
an empirically determined noise distribution. In our
cases. the noise distribution was observed 1n an un-
usually quiet section below the equatonal undercurrent.
Fits to 0.5-m ¢ taken in bins of 1 MPa vary in qualits
and have averages of 5y, equaling 3.01 + 0.13 for
PATCHEX and 2.56 + 0.17 for PATCHEX north.

4) Half-meter ¢ are not uncorrelated but must be
averaged vertically to form uncorrelated samples. The
minimum averaging length is {0 m for PATCHEX
and about 15 m for PATCHEX north. Both averaging
lengths correspond approximately to the reciprocal of
the wavenumber at which their respective shear spectra
roll off (Gregg et al. 1992).

S} After correcting for noise and scaling ¢ with
(N7, probability densities of 10-m N-scaled dissipa-
tion rates. . are lognormal. {Scaling with < A" and
NP does not yield lognormality.] Thus. the loga-
rithms of 10-m scaled dissipation are normal. As they
are also uncorrelated. they can be assumed to be in-
dependent. These distributions have oy, 1.19 for
PATCHEX and 1.46 tor PATCHEX north. The 10-
m samples. however. are not fully independent:
namely. further averaging does not reduce ay,; as rap-
idly as expected for independent samples. This appears
to be the result of weak vertical correlation within pro-
files and temporal correlation between prohles.

6) For 10-m samples. the probability densitics of
10-m logé and logS '}, (represented as loge,, ) are similar
at high magnitudes. and mean values of ¢ and ¢,,, differ
by only 2%-20%. As a consequence of the frequent
lack of turbulence at low shear magnitudes. noise affects
much of the low-magnitude probability density of <.
causing it to differ from the ¢ distribution.

7) Our assumption that the data result from random
processes appears valid since the confidence limits cap-
ture the collapse with averaging (Fig. 1). This also lends
credence to our approach in testing for independence.

8) Ten independent measurements are needed to
obtain 95% conhdence limits of a factor of 2 for
L(S3) = 207, Owing to the higher skewness of its
distribution. similar confidence limits for S5, require
as few as 40 independent samples. Sixty independent
dissipation samples are also needed for the same degree
of confidence in 10-m dissipation rates { these are com-
puted using 7y,; < 1.5 in maximum likelthood estimates
for L]e]). Tightening the confidence himits rapidly in-
creases the number of samples required.

b, Discussion

We average and then decimate to obtain imdepen-
dent samples. As a reviewer correctly notes, indepen-
dent samples can also be obtained by decimation with-
out averaging. Although decimation-only s suitable
tor some studies. we need to average and decaimate to
retain the average dissipation accompanyving the inter-
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nal wave shear over the same vertical intenval, Also,
L0-m averaged € data approvimatels tollow g lognormal
distribution. whereas the unaveraged 0.5-m data tollow
at best a complicated lognormal plus nose model. Since
decimation leaves the underhving distrihution of the
data unchanged. 1t 1s casier to provide a tractible sta-
tistical model for averaged data than tor decimated
data.

Why are the high-magnitude portions of ¢ probability
densities lognormal or nearly so? Dissipation s log-
normal or approximately so in homogencous turbu-
lence: in the thermochne, ¢ can be lognormal within
individual turbulent patches if the sample length is at
least three times the Kolmogoroff' length but much
smaller than the height of the patch ( Yamaraki and
Lucck 1990). Most ensembies of thermocline data.
however. consist of records taken minutes to days apart
over distances of tens to hundreds of meters in the
vertical and hundreds of meters to tens ol kilometers
in the horizontal. Conseguently. the samples come
from places with no turbulence as well as from many
different turbulent patches. Furthermore. the patches
are probably produced by a variety of mechanisms and
are observed at varyving stages in thoir hife cveles. As a
result. these bulk ensembles do not satisfy the assump-
tions made in deriving lognormal distnbutions for ho-
mogencous turbulence (Gurvich and Yaglom 1967)
or within individual patches in the thermocline ( Ya-
mazaki and Lueck 1990). As also noted for x (Gregg
1980) as well as tor « (Gibson 1981). the buik statistics
of x and ¢ are likely to be approximately fognormal
simply because they have multiplicative rather than
additive probabilities. Based on the similarity of the
kigh-magnitude portions of probability densities of «
and S1,. we suggest that lognormality of ¢ may he an
approximate condition resulting trom the production
of turbulence 1n proportion to skewed higher moments
of internal wave shear. A rigorous lognormal model
may be possible. but we do not know enough to con-
struct one.

Because most turbulence in the thermocline 1s pro-
duced by breaking internal waves. the statistics of bulk
ensembles ot « must reflect the character of internal
waves as well as the inherent intermittence of turbu-
lenee. Whether or not the fourth shear moment s the
hest model. ¢ depends on a skewed shear moment that
resembles some charactenistuies of the lognormal dis-
tribution. With only two datasets, we obviously have
not proven this relationship, but consider 1t a hyvpoth-
€si1s 10 be tested.

If these results are substantated by further obser-
vations, they have several consequences, Firste the
spread of the distribution of 87, (or somie other higher
moment ) should be an appronvimate upper bound for
che spread of the ¢ distribution. Tt is an upper bound
because the low-magnitude portion of the shear dis-
tribution on average does not produce turbulence or
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it generates only low ¢'s. Consistent with this, for the
independent 10-m samples we observe ay,; = 1.19 for
PATCHEX and {.49 for PATCHEX north, signifi-
cantly less than a,,y¢, = 2.57. The spread for
PATCHEX north is the larger because the dissipations
are larger and less affected by noise. Comparing shear
measurements at 12 sites in the Atlantic and Pacific.
Smart { 1988) reports £ = 1-10 times GM76. As S1,
x [, the more energetic of these sites should test our
hypothesis that 2.57 is an upper bound for a,; pro-
duced by internal wave shear. Second. if lognormality
1s only an approximate condition. lognormal statistics
should not be relied on a priori. as datasets may ap-
proach lognormality to varying degrees. Third. the sta-
tistics of dissipation are likely to differ considerably
when turbulent production results from processes other
than random internal wave ficlds. For example. our
development does not apply to turbulence produced
by hydraulic jumps or solitary waves, such as those in
the Strait of Gibraltar.

As a consequence of the dependence of microstruc-
ture statistics on the internal wave field, microstructure
measurements from different times and places cannot
be combined into a single ensemble for statistical anal-
vsis. For example. Gregg (1977) compares three sets
of Cox numbers obtained during different seasons at
28°N. 155°W and notes that their vanability suggests
modulation of microstructure intensity by mesoscale
eddies or seasonal effects. Subsequently, Briscoe and
Weller (1984 ) reported an apparent yearly cycle in the
energy of high-frequency internal waves in which F
varies by factors of 2-3 about the long-term mean.
Nevertheless, Baker and Gibson (1987 ) combined the
three sets of Cox numbers into a single ensemble with-
out considering whether the three sets were indepen-
dent. Proper treatment would consider each cruise as
an ensemble with its own statistics and then examine
the statistics of the grand average.

How much sampling is optimum for ¢ The 27
PATCHEX profiles give L1)5; = 0.937 and U< = 1.07
compared with 75 = 0.823 and Uy« = 1.25 for the
5 PATCHEX north profiles. Because we do not believe
our calibrations are better than the PATCHEX north
confidence limits, the additional sampling during
PATCHEX did not improve our overall confidence in
the averages. If our objective had been to estimate
whether a large area had a vertical eddy diffusivity of
10 *or 10 *m?’s ' a more accurate result would have
been obtained by sampling to obtain * 100 accuracy
at cach of manv sites. The sites should be separated by
about 20 km. the approximate correlation distance for
internal wave statistics (D'Asaro and Perkins 1984 ).
Assuming a,; = 1.2-2.57 requires n = 33-282, cquiv-
alent to 1-4 MSP profiles per site for + 10077 accuracy.
If o, 1.5, specifying *+ 107 accuracy for 957% con-
fidence limits. as in the abstract of Baker and Gibson
{ 1987) . increases sampling requirements from w60

o #2000, or 25 MSP protiles per site nstead of
only one.
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APPENDIN A

Details on Statistical Tests

a. Vertical uncorrelatedness of shear components

To examine the vertical correlation structure of S,
or S,. we apply the run test and the spectral distribution
function separately. The run test 1s a ssimple nonpara-
metric test of uncorrelatedness (Bendat and Piersol
1971}). A run is a sequence of consecutive values lving
on one side of the median. If the 7 values in the series
are random and independent, the number of runs. R.
is a random variable with an expected value

E(RY = (2n.n /n)+ 1 (A1)

and a vanance

ok =[2n.n Cn.on — /[0 (n - 1)]. (A2)
where 1, and #  are the number of values greater and
less than the median. and 1. = n. + n . For large n.
FE(R) = n/2and op = \/n/-i. The hypothesis of un-
correlatedness can be rejected at the 57 level of sig-
nificance if R is outside the interval

(E(R) - 19604, E(R) 1t 1.9604). (A3)
For instance. cach profile contains 815, samples be-
tween | and 9 MPa. leading us to expect 40.3 runsin
cach record with 957 confidence limits of (32.2. 49 .8),
~ We applied the run test to all S, profiles and to ali
S, profiles. For PATCHEX. R hies outside the 957
confidenee limits in three S| and four S, profiles ( Table
Al). For PATCHEX nerth, on the other hand. one §,
and three S, protiles are out of bounds. For comparison.
with a level of signtficance of 57 and with (ruly un-
correlated data, we expect incorrect rejections i ap-
proximately 0.05 = 27 1,35 profiles out of 27, The
number of incorrect rejections itself varies about s
cxpected vatlue. To assess the magnitade of this van-
ation, we simulated normally distributed white noise
with z¢ro mean and the same standard deviation as
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TaBLE Al. Tests for independence. The run test (RT) for a profile
is rejected as containing independent samples when R, the number
of runs, exceeds the 95% confidence limits {A3). The spectral distn-
bution fuaction (SDF) of a profile is rejected when any point exceeds
the 95% confidence limits for the Kolraogoroft-Smirnoff test. The
number of rejections is left of the solidus, and the number of runs is
right. Only for S, and S for PATCHEX north is the same profile
(MSP 120) rejected by both tests. Each profile contains Rt samples
of 10-m shear.

JOURNAL OF PHYSICAL OCEANOGRAPHY

Rejected Rejected Rejected
by RT by SDF by both
PATCHEX
S 307 0/27 0/27
s‘, 4727 2/27 0727
S 2/27 2/27 0/27
1o 2/27 1727 0/27
PATCHEX north
S. 1/5 2/5 1/5
Sy 3/5 2/5 1/5
Sio 0/5 0/5 0/5
%o 0/5 0/5 0/5

the shear components. We grouped the simulated data
into 27 profiles of 81 samples each and applied the run
test in the same fashion as we did with the real
PATCHEX data. By repeating this procedure 1467
times, we observed 2 or more rejections out of 27 pro-
files in 34% of the repetitions; 3 or more in 12% of the
repetitions; and 4 or more in 3% of the repetitions (the
maximum number of rejections we observed was 6).
Therefore, the number of rejections for PATCHEX
does not suggest gross departures from uncorrelatedness
for S; or for S,. This is not true, however, for
PATCHEX north; rejections exceed the number ex-
pected by chance, indicating vertical correlatedness in
both S, and S,.

The second test uses the spectral distribution func-
tion, which is the cumulative integral of the spectral
density function. ( The empirical version of this func-
tion is known as the cumulative periodogram.) Un-
correlated samples have a white (flat) spectral density
function and, equivalently, a linear spectral distribution
function. Consequently, an empirical spectral distri-
bution function of uncorrelated data should fluctuate
about a straight line, and this is used to test for uncor-
relatedness (Jenkins and Watts 1969). A profile is re-
jected as being white if any point of its spectral distri-
bution function departs from the expected straight line
by more than the 95% confidence limits using the Kol-
mogoroff-Smirnoff test (Fig. A1). Asis evident in Ta-
ble A1, the number of rejections is similar to that for
the run test, but the pattern of rejections is random.
Only one S, and one S,, profile are rejected by both
tests, which we take as further evidence for no gross
departures from uncorrelatedness.

Vorume 23

b. Uncorrelatedness between simultaneous shear
components

Taking all pairs of S. and 5’, for each cruise, we
compute Spearman’s rank-order correlation coefhicient
and Kendall’s r. Both coefficients are well-accepted
nonparametric tests whose validity does not depend
on the assumption of normality (Conover 1980). We
compute the coefhicients using numerical routines of
Press et al. (1988). In all cases we cannot reject (at the
0.05 level of significance) the null hypothesis that S,
and S, are uncorrelated. Neither test comes close to
rejecting the null hypothesis; the closest 1s Kendall's 7
= 0.0133 for PATCHEX. which can be rejected only
at the 35% level of significance. For comparnison, 7
= —0.0067 for PATCHEX north can be rejected only
with an 84% level of significance. Therefore, we can
treat S, and S, as uncorrelated with each other.

c. Lilliefors statistics for 95% confidence limits
on g-q plots

The 95% confidence limits are derived from Lilliefors
statistics for normal or exponential distributions (Ma-
son and Bell 1986). The Lillicfors statistic 1s a modi-
fication of the Kolmogoroff-Smirnoff st .tistic to com-
pensate for using estimated parameters. Computed by
Monte Carlo simulations, the modification generally
gives a smaller acceptance region when parameters
must be estimated than when they are assumed to be
known. Mason and Bell extend previous calculations
by Stephens (1974) for estimated parameters and revise
Stephens’ critical values using improved Monte Carlo
techniques. For S, and S, in Fig. 2, we assume a known
mean of zero, correspondmg to normal case 2 of Mason
and Bell. For g-¢ plots of $%, and $%;. we use the ex-

10—
08t
§O‘G— -4
ozh PATCHEX north 3
L 1-9MPa
4
0oL S U U PN VPR TP
0.00 001 002 003 0.04 a4 05
K, 7 cpm

FiG. Al. Spectral distrtbution [uncnons (aka cumulative penod-
ograms) for PATCHEX north 8, profiles. Cumulative vanances.
normaliz *d to maxima of one, are plotted on the y axis versus vertjcal
wavenun-ber on the 1 axis. Spectral distnbution functions of white
noise would plot along the diagonal. The dashed lines are 95% con-
fidence litnits of the modified Kolmogoroff-Smirnoff test.
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ponential case. For ¢, we must estimate both the mean
and standard deviation from the observed distribution
and use case 3 of Mason and Bell.

APPENDIX B
Derivation of Probability Densities
a. Probability density of $3o

Rather than comparmg the probability density of
S to with observations, it is more convenient to use z
= log;pS% = InS$%/In10. Following standard proce-
dures (Papoulis 1984), we take y = $%, and

G(y) = z = logjoy = logioS% = InSTo/In10.

It has one root, y; = ¢*'"'° and the derivative of the

function is G'(y) = 1/(y In10). Consequently,
P,(») _ In10 ¢? 1n10p—e 1% 20
[G"(y)] 262

b. Probability density of St

Following the same procedures, we return to (8) to
obtain the probablhty density of S%. Defining w
= g(y) = y?, y has only one positive root, y, =
Therefore,

P, = (BI)

Pn) _exp(—y/f2a})
e = = for y = 0,
&' ()l 4yo? Y
= }’2 = S?o (B2)

The first and second moments are

E[w] = f wP,.dw = 8g?

E[w2]=f;

Therefore, the variance of $%; is also a simple function
of a,,

(B3)
and

w2P,.dw = 38448, (B4)

ol = E[w?] — (E[w])? = 3200%, (BS)

and the standard deviation is always 2.2 times the
mean, g, = 17.9¢% = 2.2E[w].

For later use with lognormal statistics, we define z
= h(w) = Inw, which has one root, w, = ¢°. Then

Pum) _ Vere ¥ y
P: = [A'(w))] B 4q2 ., z=Inw = InS,
1 b

(B6)
and the first moment is

E[z] = In(40¥) — 2+, (B7)
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where ¥ = 0.57721- .
ond moment i1s

-1s the Euler constant. The sec-

2
E[2’] = In*(40!) — 4y In(4s}) + 4(% + 'yz)

(B8)
yielding
ol =(2/3)x%, (B9)
of
6, = Oingt, = 2.57. (B10)

Therefore, o)n5¢, is constant, independent of variations
in a;.
To compare this with observed distributions, we plot

In1QV g -lomiocg=¥e™ =241
PZZ = -~ 2 L]
45
logioSto. (B11)

Using (4) to scale $%; as &.,, the logarithmic form
is

zz = loggw =

lnlOVe’ lnloe—Vt"w/Z&f
PI = ~2 ’
4co;

r= 108103:» (BlZ)

APPENDIX C
Statistics of $7) and S%,
a. Vertical uncorrelatedness of $3o and S

No PATCHEX north profiles are rejected by the
run test or by the spectral distribution function ( Table
Al), and only 2 of the 27 PATCHEX profiles are re-
Jected none by both tests. Consequently, these tests
give no indication of significant correlatedness in St
and S%,. Presumably, the moments have fewer rejec-
tions than the shear components because they depend
on both S, and S‘ , which are uncorrelated with each
other.

b. Temporal correlatedness

To examine temporal correlation for PATCHEX,
we average S, Sy Sio. and S}, over 100-m segments
chosen to minimize decorrelation due to vertical dis-
placements by internal waves and the internal tide.
This results in eight time series for each parameter.
with each set containing 27 values, one for each profile.
None of the run tests for S, or .S must be rejected,
but two of the eight series for S, and S%, must be
rejected.

¢. Decrease in variances with averaging

The probability densities of $3, and $%, allow us to
predict how arithmetic averaging reduces the variances




1794 JOURNAL OF

PHYSICAL

OCEANOGRAPHY Yore Mmp 23

TasLk Cl. Decrease in ¢ with averaging length, /.. In cach column the observed vafues of g, 0r 8,4 are given st and tollowed i
parcntheses by the analytic values determuned from ¢C2)¢C3) and (C4) Also watinn the parentheses are standard deviations of the estimates

as determined from Monte Carlo simulations.

PATCHEX nornth

Lo -,
isn ., Tl

PATCHEX
L. (m) Fins3y Finsty
10 1.27 (1.28 = 0.03) 255256 £ 0.05)
100 0.42(0.32 + 0.02) 0.85 (0.68 + 0.03)
800 0.19 (011 + 0.02) .33 (0.24 + 0.05)

236256 0 01Y
(a2 (D67 « ik,
033024 0.0K)

EIRGI.2R + (h07)
0.3240.32 = 0.04)
017001 » 0.03)

of these moments. Owing to the large skewness of the
probability densities, we describe the variances with
a,z,,g-fo and afng‘;o, which also facilitates comparing shear
variances with variances of ¢. i

If the shear components are independent. S3 is dis-
tributed as an X * random variable with two degrees of
freedom: that is,

(Cn

where Sy, represents the 10-m shear varnances for /
= 1-2187. and S%,, and S73,, are independent for /
# j. Then

oinsz, = var(InS3,,) = var(In(cx3)) = var(Inx3).
(C2)

That is, the proportionality factor, ¢. does not affect
the vanance.

These variances are given analytically ( Bartlett and
Kendall 1946) as

var(lnx3,) = ¢'(K).

d
S d
Sios = Xz,

(€l

where '’( K) is the derivative of the digamma function
(sometimes called the trigamma function). For K = |
we have ¢'(1) = #2/6, yielding ay,53, = x/V6 = 1.28.
This is in good agreement with the observed
PATCHEX data and within 10% of the observed
PATCHEX north data (Table C1). We use Monte
Carlo methods to assess the expected vanability in
estimates of var | Inx3 ! .

When averaging S3,, over 100 and 800 m. we are
adding independent scaled X~ random variables with
two degrees of freedom. vyielding scaled X° random
variables with mere degrees of freedom. Therefore, we
have

o
var(ln{;‘(—, > S‘%m]) = var(InX3,)
[
i i KO )
var(ln{—- > S'f:»,,D = var(InXie). (C4)
|

8]0
‘

For the 100-m PATCHEX averages and for all of

the 800-m averages. the observed variances exceed the
predictions {(Table Cl1)—in some cases as much as

50%. The discrepancies are largest for the 800-m av-
erages, suggesting that a weak temporal coherence may
be partly responsible. In view of the discrepancies. the
increase in degrees of freedom with averaging is not as
large as expected.

APPENDIX D
Assessing the Lognormal Plus Noise Model

We investigate the hypothesis that the 0.5-m uncor-
rected e data in a particular depth range can be regarded
as the summation of (1) a lognormally distributed ran-
dom variable with parameters w,, and oy, and ( 2) ran-
dom noise. Specifically, we assume that ¢« = A + A,
where A is a lognormal random varnable with

EVAl =e¢"'"VS and  varl !

= FIAT - (EPA) =

(13M\‘”3(()"3 1),

{D1)

That is. In{.\) 1s Gaussian distributed with mean u,
and variance 3. The noise variate A’ is assumed to be
independent of A and to follow the observed distri-
bution from TROPIC HEAT 2 between Y and 9.5 MPa.
By ordering 1/ = 1480 noise values as #, < > < ¢ »
< nypand assuming cach equally likely, the probability
of a value less than 1, is

PIN <= ~.

22
T (D)

We next determine the cumulative distribution
function for observations of dissipation plus noise.
FAx) - Plesx] = P[A+ N= y]
Y
S Y PA+H AN Y
i

and NV = n]

¥
SPAH N XN =PIV 0]
[

\

1.
Y S PlA< A n)
V!
l A/
: Fa ", (D3
M=
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where F,(+) is the cumulative distribution function of
the lognormally distributed variate A; that is,

| - — i
ﬂﬂ&_@“ﬁy if x> n
F(x—n)= oA
0. otherwise,
(D4)

and ®( ) is the cumulative distribution function for a
Gaussian random variable with zero mean and unit
vartance.

Given a sample ¢, ¢, . . .. ¢; of ¢ measurements in
a particular depth range, we fit our model using a min-
imum chi-square procedure (Conover 1980, pp. 195~
197). We use K bins bounded by x,., and x, such that

(D5)

The kth class of observations for k = | up to K is
defined to be the set of all ¢ measurements satisfving
Xi-1 < ¢ < Xi. Let Oy be the number of ¢ measurements
in the kth class and let Ei(u., o,) be the expected
number of measurements in that class under the as-
sumption that our proposed model is true with log-
normal parameters u, and o,. We then have

Ei(py. 04) = LX(F(x) = F{x1)), (D6)

which can be computed for a given u, and o, as out-
lined. We can then forin the statistic

X (O = Exlpy. 03))?

D=0 <X <X3< ¢+ <Xy <Xgp= 0.

T(py, 0y) = :
VN S Elua, aa)
K b
0&
=3y —*— L, (D7)
ket Ei(us, 04)
where we have made use of the fact that
K K
Z O = Z Ek(#m ay) = L. (Dx)
k=1 k-1

The minimum chi-square procedure is to estimate u,
and g, as those values such that T'(x. ¢,) is mini-
mized.

To find 4, and 4, (here the tilde indicates a sample
estimate ), we must use a nonlinear optimization rou-
iine, for which it is helpful to have expressions for the
partial derivatives of 7(u,. ¢,) with respect to u, and
7,. Here

Ly (py . ay)

AT (uy, 74) *'.%, 03
Ay

Ay Ei(uy. a4)

k-1

Lot (ar,(.n) R .))

Lo lf%(#h ay) ey /TS
1 X O} i
M S Eluy, o0 7
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ET AL.

N (aF.\( X o) OFNN -

' 55"3) (D9)
s / ’ .

(')p,\
If0 < x; — n, < ., we have

L)
aF(xx —n)

Oy
aﬂ A N 3;1_,
Jﬁl%mmfm%wj.
(LR Ty

where ¢(x)=e¢ *73/V2r. (DI10)

On the other hand. if either x; < n,0rx;, = x , we have
OF \(x, — n,)/duy = 0. Likewise, we have

IMpy.0)) 1 & OF
3o, M5 Elu,. ay)
% (61{\( X - n) o oF(xi | — n,)) (D)
;o aO'A\ aa,\
If0 < x, — n, < . we have
OF (X, — 1)
da,
__In(x : ) d)(ln(.\‘k - n) - u.\\): (D12)
[ £

otherwise, we have 8F ( x, — n,)/da, = 0.

Typical fits are shown in Fig. D1. and the resulting
estimates for g, and &, arc shown in Fig. 7. The
corresponding values for T(g,. o) are given in Ta-
ble D1.

If the ¢,’s were independent of each other. we could
assess whether the observed departures from the fitted

147
4 PATCHE X
1.2 5-6 MPa
1.01
v 0.8 1
5
po
3 6.6
6.4
6.2
0.0 L T
~11.5 -10.5 -9.5 8.5 -1.5
log,, £
] PATCHE X ro=h
2 4-5MPa
5 0471
&
(&)
0.0 +——== 4L RESUNY 1 i y-
-11.5 -10.5 -9.5 8.9 7.5 6.5

log, €

Fiii. D1 Examples of X# fits to histograms of observed
0.5-m log,e taken i bins of | MPa.
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TasLe D1. Chi-square statistics for fits to 0.5-m ¢: L is the number of samples in each 1-MPa interval used for fitting, and X is the number
of classes into which the observations were grouped (this number varies between 28 and 38 to ensure that each class contains at Jeast 10
observations). If the L samples were independently distributed, the chi-square statistic T{a,.5,) would approximately follow a chi-square
distribution with K — 3 degrees of freedom (here i, and &, are the minimum chi-square estimates of the lognormal parameters u, and o).
Because the samples are correlated, assessment of T(i,.5,) is problematic, but a Monte Carlo study of normally distnbuted band-limited
white noise indicates that we have reasonable goodness of fit for PATCHEX north, whereas the oppusite is true for PATCHEX.

PATCHEX PATCHEX north
MPa L K ia,3,) L K Ny, 0.
1-2 5361 38 3321 993 36 78.4
2-3 5372 35 2492 996 i3 67.3
34 5382 32 326.8 997 33 107.9
4-5 5382 34 3059 1000 3 53.0
5-6 5384 32 2992 996 30 s1.4
6-7 5396 29 2925 998 38 R0.8
7-8 5389 28 398.0 998 13 $29
8-9 5393 30 316.1 997 36 489

distributions are consistent with random error by
comparing the value of T(&,, 5,) to a chi-square ran-
dom variable with K — 3 degrees of freedom (Conover
1980). Unfortunately, the ¢ are not anywhere close to
being independent, but based on the assumption that
correlation and distributional properties can be decou-
pled in a chi-square statistic, we can crudely determine
the effect of different degrees of dependence on the chi-
square statistic by the following procedure.

For an integer M > |, consider a normally distrib-
uted band-limited white noise process with a low-fre-
quency cutoff of 1 /2 M. The theoretical autocovariance
sequence for such noise is positive for lags less than A
and is zero at lag M ; hence, by choosing M in the range
from 10 to 20, the autocovariance sequence for the
band-limited process will mimic the observed sequence
for the 0.5-m ¢, which damps down to zero typically
in the range from 5 to 10 m. We then generate samples
from this process with a number of points comparable
to those obtained in either PATCHEX (5380) or
PATCHEX north (1000) and fit the data to a normal
distribution using the minimum chi-square procedure
outlined above. By replicating this procedure many dif-
ferent times and looking at the observed values of the
chi-square statistic, we find that the range of observed
chi-square statistics in the simulations matches very
closely the range of values for T(z,, #,) shown in Table
D1 for PATCHEX north. For PATCHEX, however,
the values arc about a factor of 2 to 3 larger than those
in the simulation study. Thus, we conclude that our
operational model fits the PATCHEX north data rea-
sonably well, while there is evidence of a lack of fit in
PATCHEX (this can be seen in Fig. DI, where the
fitted distribution and the histogram disagree markedly
in the central portion).

APPENDIX E
Theoretical g-¢g Plots

q-q plots of 10-m ¢ and &,

Let x, be the pth quantile of the &, distribution.
Then

p = PlcSth. < x,] = Pleadxd < x,]
= P[x3 < Vx,/c/e?] = P{xi < x;]. (E1)

where x}, is the pth quantile of the X} distribution. We
thus have

(E2)
Next, let y, be the pth quantile of the ¢ disiriLution,

X, = (ca’x)y)?.

-a -1-
»
PATCHEX

-9 -
3
W
4
g

-]04!-

-‘ ' -*PJ; 4 B vy
- -10 -9 -8
fogio €
24
PATCHE X north

_8--
4
"W
e
g

-9+

-10 4 . . .
-10 -9 -8 -7
logio €

Fi1G. EL. Plots of theoretical g-4 distributions for log,o¢,. and
logyp¢ agree well at high magnitudes but not at low magnitudes
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and let Z be a normal random variable with zero mean
and unit variance; then

- 1 €) — & — HMine
p=Pli< )= P[ 08(8) — pm: _ log(y,) = m ]
Oin: Oini
IOg(yp) -

= p[z < ""’3} = P[Z < y)), (E3)

Olne

where y, is the pth quantile of the standard normal
distribution. We thus have

Vo = exppin: + Ypoum:). (E4)

The g-g plots of these two theoretical distributions
agree well at high magnitudes (Fig. E1).

APPENDIX F
Confidence Limits for E(S3,) and E(S%,

a. Confidence limits for E(S3o)

Previously we found that S, is distributed as a re-
scaled X% random variable with two degrees of freedom:

x3 (F1)

using E(S%) = 202. Averaging n of these $%;; yields

4 E(S
<sm>s—zsm, ‘2‘°) x4,  (F2)
or, equivalently,
2 g.s‘z ) d
Tl = xd,, (F3)

E(Sh

where X3, denotes a X? random variable with 2z de-
grees of freedom. i

To obtain confidence limits for E(S}), let X3,,
represent the p X 100th percentage point of the x2
distribution with 2n degrees of freedom; that is,

P(x.< Xipl=p

where P[A] refers to the probability of the event 4.
Then

(F4)

2”5 S;:ltoz

P[X%ﬂ.(i-p)/Z = E(S%o) < X%n.(Hp)/Z] =p (FS)
This is equivalent to
SZ _ SZ
[}_@ﬁ_gl E(S%o)\m (F6)
2ni+p)/2 2n(l )2

Therefore, the p X 100% confidence interval for
E(S%)is

GREGG ET AL.
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[Ln X {$3), Us X (S3)], (F7)
where
2n
Ly=———— and U,= (F8)
Xinirep2 Xinci-pyr2

To evaluate X3, ,, we use Eq. (3) of Zar (1978); to
input x, the standardized normal deviate, we use the
approximation for ' (p) in Table 6.5 of Chambers
et al. (1983).

b. Confidence limits for E(S%5)

As noted in the main text, confidence limits for
E(S%5) can be based either on (S,o) or on

2 Sto.. (F9)
i=1

X |-

(Sh) =

Let Q, denote the average of the squares of n indepen-
dently distributed X3 random variables, and let Q,,
represent the p X 100th percentage point of the distri-
bution of Q,; that is, P[Q, < Q,,J,] =p. ApX 100%
confidence interval for E(S%) is given by

(L5 X {S%Y, Uy X ($1)1, (F10)
where
8 8
L,=-——— and U, = ———, (Fll)
Qn.(l+p)/2 Qn.(l—P)IZ

The percentage points (,, can be determined either
by Monte Carlo simulations or, if n = 100, by an Edge-
worth approximation to the distribution of @, [ see sec-
tion 1.5.D of Bickel and Doksum (1977)].

APPENDIX G

Comments on Baker and Gibson (1987)

Baker and Gibson (1987) urge using lognormal sta-
tistics to estimate (¢) in the thermocline. We agree
that lognormal statistics are useful for planning field
measurements, but do not concur that they should be
routine for post facto data analysis. In the first place,
not all datasets are lognormal. As noted in the text,
our ¢ profiles are definitely not lognormal unless scaled
with { N?) and corrected for noise. Second, at present
there 1s no rigorous model demonstrating under what
conditions ¢ should be lognormal in the thermocline.
Our hypothesis in this paper is that lognormality of
scaled and noise-corrected data is an approximate
rather than an exact condition.

Third, Baker and Gibson (1987) claim that the mle-
bas:d estimator X, of the parameter u has smaller
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TasLe Gl. Swatistics of 10-m dissipation between § and 9 MPa.
For small samples of lognormal distributions, arithmetic estimators
of the mean are more efficient than maximum likelihood estimators:
that is, var{,mt < var| X! tor n « 21 v < 10 the efficiency
1s infinite.

n var! Come! var) V! Ratio {efliciency)
10 41 381 397 761 2589 |56 159 678

15 631 252 172771 3.63

20 153173 [29 378 [.18

21 128 300 123 308 1.04

22 109 528 117 798 .93

25 74122 103 662 0.71

S0 16 761 51 831 0.32
100 6 046 25916 0.23

X. — —_ 0.17

PHYSICAL OCEANOGRAPHY

variance than the sample mean X,,. This is true for
moderate-to-large sample sizes, but it is nor true for
very small samples. In fact, for samples sizes # such
that

n<le®+ 1 (Gl)

the variance of X,,. is infinite! This condition is cor-
rectly stated by Baker and Gibson following their Eq.
{B11), but they do not note its practical implications.
This becomes an issue in their section 3, where they
represent an example from Gregg (1977) with o
=4.41 and n = 10. For this value of ¢*. n = 10 is the
smallest sample size for which var} X} is finite. If
we use their Egs. (B10) and (B11). we can compute
var{ X } , var{ X;m } and their ratio for small n. Table
G 1 shows that, for n < 21, we should prefer X, over
Xumie as our estimator of u. while the opposite holds for
n> 21.(Note that their Fig. Bl only shows the relative
efficiency for moderate n, namely, 50 and 100.)

If we are dealing with correlated data rather than
uncorrelated data as Baker and Gibson assume. the
minimum sample size for which X, is preferable over
Xam will certainly be larger.

It should also be noted that confidence intervals
based on mle’'s are not necessarily valid when other
estimates are used. Thus, Baker and Gibson’s claim
that mie-based confidence intervals can be used with
their graphical estimates is not correct. To be specific,
the claim that their equation (7) still holds when 1)
the graphical estimator is used and 2 there is substan-
tial noise cannot be supported by appealing to the
notseless case (as the authors do in their discussion of
Fig. 4b). As can be seen from a limiting case argument
(i.e.. all noise). there st be some dependence on the
number of points included in the graphical fit, but they
claim there is none. Furthermore. their graphical cs-
timates of g, and a,,; are not maximum likelihood
estimates.
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